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This study introduces novel solutions for reconstructing the structure of transparent biological media within the framework of 
polarization-sensitive optical coherence tomography. Reconstruction of the geometric phase, based on a modified Mach-
Zehnder interferometer, enables mapping of the polarization architecture of the object, specifically the orientation of collagen 
fibers throughout the longitudinal scan. By accounting for scattering centers both in the epithelium and keratocytes in the 
cornea stroma, the depolarization of the object signal can be evaluated, which increases the signal-to-noise ratio toward the 
useful signal by four times. The impact of scattering on  the object signal was assessed through mathematical modeling within 
the Monte Carlo approximation. 
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1. Introduction 
 

Optical Coherence Tomography (OCT) is a non-

invasive imaging technique that provides high-resolution 

cross-sectional and longitudinal (lateral) images of tissue 

structures [1,2]. It is particularly valuable for examining 

organs where conventional diagnostic methods, like biopsy, 

are impractical. Widely used for detecting eye pathologies, 

OCT employs short femtosecond light pulses for optical 

ranging, analogous to how ultrasound uses sound waves, 

enabling detailed visualization of biological tissues. This 

technology bridges the gap between ultrasound imaging and 

microscopy [3]. 

OCT enables real-time acquisition of high-resolution 

three-dimensional images [4,5], made possible through 

rapid scanning speeds and efficient signal processing. The 

exceptional resolution allows for precise visualization of 

tissue architecture and morphology. 

The technique operates using a two-beam 

interferometer paired with a broadband light source [1-5]. 

The optical path length varies in the sample arm of the 

interferometer, and interference fringes form only when the 

path lengths in the sample and reference arms match within 

the coherence length of the light source, typically between 

2 and 15 µm. The coherence length determines the axial 

resolution, while the angular properties of the light source 

dictate lateral resolution. 

Various advanced OCT techniques have emerged to 

enhance the study of biological tissues, including methods 

for reconstructing amplitude and phase information from 

biological samples. These advancements enable high-

resolution tomographic imaging of blood flow, the 

generation of velocity maps, and precise localization of 

fluid dynamics for diagnostic purposes [6]. 

While OCT provides sufficient axial resolution for 

visualizing tissue structures, it has a notable limitation: it 

struggles to accurately assess individual thin nanolayers 

when they are damaged or disrupted. Addressing this 

challenge requires additional measurements beyond signal 

intensity. This is where Polarization-Sensitive OCT (PS-

OCT) offers a solution, enhancing image contrast and 

providing more detailed insights into the sample being 

analyzed [7-10]. Recently we have introduced a non-

invasive PS-OCT approach based on the modified Mach-

Zehnder interferometer to reproduce geometric phase of a 

birefringent layer structure [11-13]. 

The geometric phase in this situation contains critical 

information about the polarization properties of the layer, 

specifically the orientation of the optical axis along the 

length of the longitudinal scan. This information enables 

precise identification of damaged regions within the object. 

As light enters a biological object, such as the cornea 

of the eye, it interacts with the tissue's microstructure 

through multiple scattering events. These occur within 

specialized fibroblasts in the cornea stroma and as 

reflections from the surfaces of lamellae, driven by 

variations in the refractive index that define the tissue's 

architecture. The resulting object wave encodes critical 

information about the medium's properties, such as an 

amplitude information, light depolarization, phase shift,  

orientation of collagen fibers. 

In this study, we propose a novel PS-OCT solution that 

combines a modified Mach-Zehnder interferometer with 

geometric phase approaches and the Monte Carlo method. 
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This integrated approach allows for detailed, high-quality 

structural analysis of biological samples. It enhances 

reconstruction accuracy for transparent and translucent 

objects by mitigating the effects of depolarization, 

improving the signal-to-noise ratio, and enabling deeper 

insights into the structural organization of biological object. 

 

 
2. Scattering of photon packets in the  
     framework of Monte Carlo approach 
 
The cornea of the eye, as an optically transparent 

medium, consists of a set of layers (Fig. 1), each of which 

has a specific purpose in supporting visual function and 

forming the image on the retina. 

In the first approximation, when forming the optical 

flow interacting with the stroma, we will disregard the 

absorption of the photon packet by the structure of the 

cornea. Instead, the focus will be on the mechanism of 

depolarization of the radiation during the scattering of the 

photon packet within the epithelium (the layer immediately 

following the precorneal tear film, Fig. 1) and the 

keratocytes, which serve as the scattering centers of the 

stroma. 

 

 
 

Fig. 1. Structure of eye cornea (colour online) 

 

The nuclei of epithelial cells act as Mie scatterers, 

spherical in shape, with diameters ranging from 5 to 7 µm 

[14, 15]. The cytoplasm of the epithelium is characterized 

by a refractive index of 𝑛𝑐𝑦𝑡 = 1.36, and the relative 

refractive index between the nucleus and cytoplasm is 𝑚 ≡
𝑛𝑛𝑢𝑐/𝑛𝑐𝑦𝑡 = 1.06 [15]. In the literature, for biological 

objects classified as soft particles ( 𝑚 − 1 ≪ 1) with a size 

parameter 𝜉 = 𝑘𝑎 ≫ 1 (𝑎 being the radius of the nucleus), 

the Van de Hulst approximation theory [16] is commonly 

applied. This approximation effectively describes the 

scattering of light by these particles. The Van de Hulst 

approximation is a scalar scattering theory and can be 

employed for particles of arbitrary shape, not limited to 

spherical ones [16]. 

In the van de Hulst approximation, the effective 

scattering cross-section 𝜎𝑠 of the epithelial cell nucleus is 

defined as [14]: 

 

𝜎𝑠 = 2𝜋𝑎
2 [1 −

sin(2𝜒(𝑚−1))

𝜒(𝑚−1)
+ (

sin(𝜒(𝑚−1))

𝜒(𝑚−1)
)
2

],     (1) 

 𝜒 = 𝜉𝑛𝑐𝑦𝑡 – the size parameter of the nucleus. 

Then the scattering coefficient 𝜇𝑠 [17]: 𝜇𝑠 = 𝜌𝑁𝜎𝑠, 
where 𝜌𝑁 is a number density of particles. Then, according 

to preliminary estimates 𝜎𝑠 = 74,56 𝜇𝑚2, 𝜇𝑠 =
0,033 𝜇𝑚−1. 

The parameters of keratocytes involved in the 

modeling [18]: transverse length a = 30.9 ± 8.2 µm; 

thickness h = 1.34 ± 0.46 µm, depending on the thickness 

of adjacent lamellae. The area of the keratocyte cell body 

viewed in coronal (frontal) section was 292 ± 118 μm2, 

which determines the longitudinal length b (Fig. 2). The 

nucleus occupies about 75% of the cell in the cross section 

and about 30-40% in the frontal section and is 1.02 ± 0.42 

µm in thickness and 18.2 ± 6.0 µm in length. 

The simulated keratocyte according to the entered 

geometric parameters is shown in Fig. 2. 
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Fig. 2. Geometric model of keratocyte (a = 30 µm, b = 10 µm, h = 1.34 µm) (colour online) 

 

The keratocyte is surrounded by extracellular fluid, the 

refractive index of which is 𝑛𝑏𝑎𝑠𝑒 = 1.356  [17], the 

relative refractive index of the keratocyte is 𝑚 =
𝑛𝑘𝑒𝑟/𝑛𝑏𝑎𝑠𝑒 = 1.018. The particles are also optically soft. 

The size and value of the refractive index correspond to the 

Van de Hulst approximation [16]. The only difference is 

that keratocytes are not spherical particles, so the form of 

the scattering amplitude function will be different. 

Another key aspect of the modeling is that, according 

to numerous experiments [19], keratocytes are the primary 

contributors to the back reflected optical flow. The 

amplitude reflection coefficient at the interface between the 

"extracellular fluid-keratocyte” is estimated as  𝑟𝑘𝑒𝑟 =
|𝑛𝑘𝑒𝑟−𝑛𝑏𝑎𝑠𝑒|

𝑛𝑘𝑒𝑟+𝑛𝑏𝑎𝑠𝑒
= 0.00913. Estimation of the weighting factor 

of the photon packet that is formed during reflection, 𝑊𝑅 ∝

|E⃗⃗ 𝑅|
2
∽ 10−5 determines packet’s contribution to the 

formation of the signal that comes out of the stroma, since 

it exceeds the value that determines the condition for the 

“disappearance” of photons  (10−6). 

In the Van de Hulst approximation, the scattering 

amplitude function (according to (10), (11) 𝑆1(𝜃, 𝜑) =
𝑆2(𝜃, 𝜑) = 𝑆(𝜃, 𝜑)), for particles of arbitrary shape [16,17] 

can be written down  𝑆(𝜃, 𝜑) =
𝑘2

2𝜋
∬(1 −

exp[−𝑖𝛿(𝜉, 𝜂)]) exp[−𝑖𝑘r(𝜃, 𝜑)] 𝑑𝑃. 

Integration is carried out over the entire plane of the 

geometric section of the particle P, the area of the geometric 

shadow (Fig. 3), which is formed in the plane 𝑒 ⊥, 𝑒 ∥, of the 

local coordinate system of  the incident photon  (𝑒 ⊥, 𝑒 ∥, 𝑢⃗ ).  
 

 

 
 

Fig. 3. Formation of the geometric shadow area Р:  𝑢⃗   - directional vector of the incident photon,  𝑢⃗ 𝑠 - directional vector of the 

scattered photon, 𝜃, 𝜑  - angles describing of scattering photon orientation   𝑒 ⊥, 𝑒 ∥, 𝑢⃗  - local coordinate system based on the incident 

photon, (𝜉, 𝜂) – coordinates in the plane P (colour online) 
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Here  𝑘 =
2𝜋

𝜆
, where 𝜆 – wavelength in vacuum; 

𝛿(𝜉, 𝜂) = 𝑘𝑑(𝜉, 𝜂)(𝑚 − 1) – phase shift of a wave in a 

particle depending on the path length 𝑑(𝜉, 𝜂) of the beam in 

the particle’s medium, (𝜉, 𝜂) – are the points coordinates  in 

the plane 𝑃, r(𝜃, 𝜑) = (𝜉 cos 𝜑 + 𝜂 sin𝜑) sin 𝜃.  

 
 
3. Monte Carlo approach for photon  
    scattering in cornea 

 
The interaction of photon packets with scattering 

centers is described in the approximation of the Monte 

Carlo approach [20]: 

- determination of the photon free path [20] 𝑙 = −
ln 𝜉

𝜇𝑠
 

until the next act of interaction; 

- assessment of angles (Fig. 4) - the polar angle θ, 

which determines the scattering plane and the azimuthal 

angles φ (ψ) of rotation of the meridional planes. 

Meridional planes are specified by the direction of the 

scattering vectors and their projection onto the XOY plane. 

The scattering plane is formed by the direction of the 

incident photon vector and the scattering vector for single 

scattering (Fig. 4, a) or the scattering vectors for multiple 

scattering (Fig. 4, b). Photon polarization is specified 

relative to the meridional planes of the initial photon and 

the scattered photon. 

 

 

 
 

(а)                                               (b) 

 

Fig. 4. Determination of angles 𝜃, 𝜑, 𝜓 for single (a) and multiple (b) scattering in the meridian planes Monte Carlo approximation 

[1]. Here  𝑢⃗ 0  is the guiding vector of the incident photon, 𝑢⃗ 1  is the guiding vector that determines the direction of the photon during 

single scattering (a), 𝑢⃗ 𝑗 , 𝑢⃗ 𝑗+1  are the guiding vectors, respectively, for j (j+1) scattering events (b). Green (blue) planes are the 

introduced meridional planes, the position of which is specified by the angles 𝜑, 𝜓, the purple one is the scattering plane, determined by 

the angle 𝜃. 𝑒 ⊥, 𝑒 ∥, 𝑢⃗  – vectors defining a local orthonormal basis (colour online) 

 

The initial weight of photon packets 𝑊𝑖 = 𝑇, the 

number of packets 104, the initial direction of propagation, 

which sets the direction vector of the incident photon 𝑢⃗ 0 =

(0,0,1)𝑇, the initial polarization E⃗⃗ 0 = (−1, 0)
𝑇, initial 

coordinates (xrand, yrand, z0) of the photon position. 

Condition: A section of 16 µm × 16 µm is selected, 

which is consistent with the cross section of the beam. As a 

first approximation, we will limit ourselves to the same 

weight of photon packets over the entire cross section, and 

take the wave front to be flat. 

To determine angles in the meridian plane Monte Carlo 

approximation [21] it was introduced a local coordinate 

system with an orthonormal basis constructed from three 

vectors: the vector 𝑢⃗ , which defines the direction of photon 

propagation, and the vectors 𝑒 ⊥, 𝑒 ∥, which define the 

components of the electric field perpendicular and parallel 

to the scattering plane, respectively. For a right-handed 

coordinate system, the following relationship holds [1]: 

𝑒 ⊥ × 𝑒 ∥ = 𝑢⃗ . 
If the guiding vector of the incident photon is 𝑢⃗ 0 =

(0,0,1)𝑇, then the parallel component 𝑒 ∥𝑖𝑛 = 𝑢⃗ 0 × 𝑒 ⊥𝑖𝑛 =

(1,0,0)𝑇 [2], and the perpendicular component 𝑒 ⊥𝑖𝑛 =

(0,−1,0)𝑇, are directed opposite to the OY axis [21]. In this 

case, 𝑒 ⊥𝑖𝑛 × 𝑒 ∥𝑖𝑛 = 𝑢⃗ 0. The initial reference plane is the 

incident photon plane XOZ (Fig. 4a). The electric field of 

the incident beam can be represented in the local coordinate 

system (𝑒 ⊥𝑖𝑛 , 𝑒 ∥𝑖𝑛 , 𝑢⃗ 0)  as E⃗⃗ 𝑖𝑛 = 𝐸∥𝑖𝑛𝑒 ∥𝑖𝑛 + 𝐸⊥𝑖𝑛𝑒 ⊥𝑖𝑛, where 

𝐸∥𝑖𝑛 (𝐸⊥𝑖𝑛)  are the parallel and perpendicular components, 

respectively. 

Let the photon undergo a single scattering event (Fig. 

4a). In this case, the coordinate system (𝑒 ⊥𝑖𝑛 , 𝑒 ∥𝑖𝑛, 𝑢⃗ 0) is 

transformed into a local coordinate system (𝑒 ⊥𝑠
′
, 𝑒 ∥𝑠

′
, 𝑢⃗ 1), by 

rotating it by an angle 𝜑, which is associated with the 
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direction of the photon after scattering 𝑢⃗ 1  (Fig. 4a). The 

electric field vector is also transformed and is expressed as: 

 

(
𝐸∥𝑠
′

𝐸⊥𝑠
′ ) = (

cos𝜑 − sin𝜑
sin𝜑 cos𝜑

) (
𝐸∥𝑖𝑛
𝐸⊥𝑖𝑛

) 

 

 or  E⃗⃗ 𝑠
′ = 𝑅(𝜑)E⃗⃗ 𝑖𝑛 ,                            (2) 

 

where 𝑅(𝜑)  – meridional plane rotation matrix (Fig. 4а).  

Taking into account the scattering matrix 𝑆(𝜃, 𝜑), 
which describes the processes associated with the scattering 

plane, the components of the electric vector relative to the 

scattering plane can be represented as: 

 

(
𝐸∥𝑠
𝐸⊥𝑠

) = (
𝑆2(𝜃, 𝜑) 𝑆3(𝜃, 𝜑)

𝑆4(𝜃, 𝜑) 𝑆1(𝜃, 𝜑)
) (
cos 𝜑 − sin 𝜑
sin𝜑 cos𝜑

) (
𝐸∥𝑖𝑛
𝐸⊥𝑖𝑛

)  or E⃗⃗ 𝑠 = 𝑆(𝜃, 𝜑)𝑅(𝜑)E⃗⃗ 𝑖𝑛.                          (3) 

 

If the direction of propagation of the incident photon is 

arbitrary, i.e. in the case of multiple scattering, it is 

necessary to take into account the local orthonormal basis 

for each scattering vector, taking into account the rotation 

of the local coordinate system by angles 𝜑, −𝜓 

respectively, and the formation of new local coordinate 

systems (Fig. 4b). 

Then the resulting Jones vector for two arbitrary 

scattering events j and j+1 will be written as: 

 

(
𝐸∥𝑠
𝐸⊥𝑠

) = (
cos𝜓 sin𝜓
− sin𝜓 cos𝜓

) (
𝑆2(𝜃, 𝜑) 𝑆3(𝜃, 𝜑)

𝑆4(𝜃, 𝜑) 𝑆1(𝜃, 𝜑)
) × 

 

(
cos 𝜑 − sin𝜑
sin𝜑 cos𝜑

) (
𝐸∥𝑖𝑛
𝐸⊥𝑖𝑛

).                      (4) 

 

If 𝑆1(𝜃, 𝜑) = 𝑆2(𝜃, 𝜑) = 𝑆(𝜃), 𝑆3(𝜃, 𝜑) = 𝑆4(𝜃, 𝜑) = 0, 

we can write      

                                                                          

E⃗⃗ 𝑠 = 𝑅(−𝜓)𝑆(𝜃)R(𝜑)E⃗⃗ 𝑖𝑛,                 (5) 

 

where 𝑅(−𝜓) matrix of rotation of the scattering plane to 

the subsequent position of the meridional plane associated 

with the subsequent orientation of the scattering vector. 

In the case of multiple scattering, after the K-th event, 

the Jones vector is written as [22]: 

 

E⃗⃗ 𝐾 = [∏ 𝑅(−𝜓𝑗)𝑆(𝜃𝑗)𝑅(𝜑𝑗)
𝐾
𝑗=1 ]E⃗⃗ 𝑖𝑛.            (6)                        

 

It would like to note that all coordinate system 

transformations are described mathematically by rotation 

matrices and rotation transformations, which we used 

according to the proposed functions of the Mathematica 

software environment. The resulting amplitude and phase 

information after K scattering events, taking into account 

the free path length 𝑙, can be obtained by multiplying (7) by 

𝑒𝑖𝑘𝑛𝑙: 
 

E⃗⃗ 𝐾(𝑙) = 𝑒𝑖𝑘𝑛𝑙 E⃗⃗ 𝐾.   (7) 

 

The resulting photon packet will continue to participate 

in subsequent interactions with scattering centers until it 

reaches the boundary between media and exits the layer. To 

estimate the angles (𝜃, 𝜑) in the approximation of the 

polarized Monte Carlo model, the concept of a phase 

function [21] is used, which has the physical meaning of 

determining the probability density of photon scattering. 

For this model, the following form of the phase function 

[21] can be accepted: 

𝑃(𝜃, 𝜑) = 𝑠11(𝜃, 𝜑)
+ 𝑠12(𝜃, 𝜑)[𝑄0 cos(2𝜑) + 𝑈0 sin(2𝜑)]
/𝐼0, 

(8) 

 

where 𝑆0 = [𝐼0, 𝑄0, 𝑈0, 𝑉0]
𝑇 – the Stokes  vector of incident 

radiation, 𝑠11(𝜃, 𝜑) and 𝑠12(𝜃, 𝜑) – scattering matrix 

elements associated with amplitude scattering matrix 

elements 𝑆1(𝜃, 𝜑) и 𝑆2(𝜃, 𝜑) as follows [21]: 

 

𝑠11(𝜃, 𝜑) =
1

2
(|𝑆2(𝜃, 𝜑)|

2 + |𝑆1(𝜃, 𝜑)|
2)

𝑠12(𝜃, 𝜑) =
1

2
(|𝑆2(𝜃, 𝜑)|

2 − |𝑆1(𝜃, 𝜑)|
2)
.        (9) 

 

In the scalar case 𝑆1(𝜃, 𝜑) = 𝑆2(𝜃, 𝜑) = 𝑆(𝜃, 𝜑), and 

determines the amplitude scattering function. Then 

𝑠11(𝜃, 𝜑) = |𝑆(𝜃, 𝜑)|2, 𝑠12(𝜃, 𝜑) = 0. The phase function 

according to (8) will be written 𝑃(𝜃, 𝜑) = 𝑠11(𝜃, 𝜑) =
|𝑆(𝜃, 𝜑)|2. In the Van de Hulst scalar approximation, for 

spherical particles, the amplitude function becomes only a 

function of the scattering angle 𝜃, i.e. 𝑆(𝜃, 𝜑) = 𝑆(𝜃)  and 

can be written [16]:  

 

𝑆(𝜃) = 𝜒2
(1+cos 𝜃)

2

𝐽1(𝜒 sin 𝜃)

𝜒 sin 𝜃
,            (10) 

 

where 𝐽1 – Bessel function (of 1st kind and 1st order). 

If the phase function is only a function of the scattering 

angle 𝜃 then two uniformly distributed random variables are 

generated – 𝑃𝑟𝑎𝑛𝑑 ∈ [0; 1] and 𝜃𝑟𝑎𝑛𝑑 ∈ [0; 𝜋]. If 

𝑃𝑟𝑎𝑛𝑑(𝜃𝑟𝑎𝑛𝑑) ≤ 𝑃(𝜃𝑟𝑎𝑛𝑑),  𝜃𝑟𝑎𝑛𝑑  is accepted as the 

scattering angle. Otherwise, the procedure is repeated. 

Deviation from the scalar approximation requires choosing 

a pair of angles: 𝜃, 𝜑. In the polarized Monte Carlo 

approach and the rejection method, the following 

conditions are applied to recover the phase function: three 

random variables are generated [21]: 0 ≤ 𝜃𝑟𝑎𝑛𝑑 ≤ 𝜋, 0 ≤
𝜑𝑟𝑎𝑛𝑑 ≤ 2𝜋 and 0 ≤ 𝑃𝑟𝑎𝑛𝑑 ≤ 1. If 𝑃𝑟𝑎𝑛𝑑 ≤
𝑃(𝜃𝑟𝑎𝑛𝑑 , 𝜑𝑟𝑎𝑛𝑑), then the angles 𝜃𝑟𝑎𝑛𝑑 , 𝜑𝑟𝑎𝑛𝑑 are chosen.  

Next, the direction of photons is evaluated after each 

scattering event, taking into account the resulting scattering 

angles  𝜃, 𝜑. 

The histogram (Fig. 5) shows the probability 

distribution of N photons by scattering orders K. The "0th" 

order is the absence of scattering. According to the 

calculated parameters describing the scattering medium 

𝜇𝑠 = 0,033 𝜇𝑚
−1, and using the total number of 5000 
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photons as an example, we can conclude that single 

scattering (N=1) dominates at 42.3%, 18.7% of photons do 

not scatter, and 39% of the photons undergo higher-order 

scattering events.

 

 
 

Fig. 5. Distribution of relative number of photons by scattering orders (colour online) 

 

Scattering of photon packets on scattering centers 

determines depolarization of photon packets, which leads to 

the appearance of noise signals, a decrease in the level of 

the information signal. 

Modeling the beam that contributes to forming the 

object signal, containing information about the structure of 

stromal lamellae and the distribution of keratocytes in the 

stroma, accounts for the depolarization of radiation due to 

scattering in the epithelium (Fig. 5). A preliminary estimate 

of the scattering coefficient of photon beams propagating 

through the keratocyte volume to a stromal depth of 

approximately 0.45 mm, considering the photon mean free 

path, indicates the dominance of single scattering. For 

single scattering, depolarization is virtually absent. 

Therefore, we will assume that in the formation of the 

OCT signal, the influence of depolarization of photon 

packets due to scattering on keratocytes does not occur. 

Modeling the scattering of a photon packet in the 

epithelium, using the meridian Monte Carlo method 

approximation, indicates with a 73% probability that 

photons interacting with the stroma will retain their 

polarization E⃗⃗ 0 = (−1, 0)𝑇 (Fig. 6a). 

 

 
(а)                                                                                              (b)       

 

Fig. 6. Distribution of polarization in the transverse plane within the half-width of the beam when exiting the epithelium in the forward 

(a) and backward (b) directions (colour online) 
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The influence of the epithelium on beam polarization 

is also evident during reverse propagation, after interacting 

with the stroma (Fig. 6b). In this case, the degree of 

polarization reaches approximately 0.41 (Fig. 7, second red 

point). Depolarization was assessed using the relationship 

[23]: 𝑃(𝑑) ≅
3

2
𝑒−𝑑/𝑙𝑝 , where 𝑙𝑝 = 2.804𝑙𝑠  is the 

characteristic length of depolarization for linear polarized 

wave, and 𝑙𝑠 = 1/𝜇𝑠 is the scattering mean free path. 

The discrete distribution of photons allows to estimate 

the impact of depolarization on the level of the useful object 

signal during cornea scanning. Discrete points, where the 

signal is assessed, correspond to the pixels of the 

photosensitive matrix in the camera used [23]. This setup 

assumes either an averaging of depolarization within a pixel 

or the use of nanoaperture arrays with a 10 nm aperture 

diameter [23], facilitating nearly photon-by-photon 

scanning (Fig. 16). In this approach, an increase in the 

signal-to-noise ratio is observed, significantly enhancing 

the accuracy of lamella structure reconstruction and the 

localization of keratocytes.  

This relationship is represented by the blue curve in 

Fig. 7. Additionally, depolarization was modeled using the 

Monte Carlo method, with the results approximated by a 

yellow curve that passes through the Monte Carlo-

calculated data points (Fig. 7). 

 

 
 

Fig. 7.  Dependence of the degree of linear polarization on the 

length of the path of the linearly polarized beam 𝐸⃗ 0 = (−1, 0)
𝑇 

through the epithelium. The red dots indicate the degree of 

polarization estimated in the forward direction (thickness of 

about 50 μm), backward (thickness of about 100 μm) using the 

Monte Carlo method. The blue curve is calculated theoretically, 

the yellow one is approximated by the obtained points  

(colour online) 

 

After signal processing, a horizontally linearly 

polarized photon packet is directed onto each lamella.  To 

form a linear polarization, we introduce into the probing 

beam a system that allows generating arbitrary polarization 

states, such as a QWP-HWP combination [24], a Berek 

compensator [25], or a polarization modulator (PM) (Fig. 

14).  With known depolarization parameters in the 

epithelium and the anisotropy of a specific lamella, the 

polarization of the probing beam is modeled to ensure that 

each lamella is illuminated by a horizontally linearly 

polarized beam. The frequency of the position change of the 

PM in XY directions, which determines its plane 

“polarization sensitivity”, is significantly less than a 

fraction of a second, the frequency of regular jumps in eye 

movement. 

To maintain this condition, a feedback loop connecting 

the central processor to the polarization modulator (PM) is 

essential. This feedback system compensates for the 

depolarization of the object signal and corrects deviations 

from the horizontally linear polarization state. 

Proven methods of computer signal processing reduce 

the influence of the background signal caused by 

depolarization of radiation. As a result, the accuracy of 

stroma structure reproduction increases by 22.84%. The 

received object signal interacts with the reference beam. 

 
 
4. PS-OCT signal formation 
 

In the PS-OCT approach [26], a broadband light source 

such as a Ti:sapphire laser, with a spectral bandwidth of 170 

nm and a central wavelength of 800 nm, achieves an axial 

resolution of 𝛿𝑧 ≈ 1.662 µm in air. This resolution is well-

suited for capturing the average thickness of lamellae. The 

axial resolution 𝛿𝑧 varies with the refractive index of the 

cornea, which changes with depth. For example, in the 

anterior stroma, where the refractive index is 𝑛 = 1.38   

[27], the axial resolution improves to 1.2μm, making it 

sufficient to resolve the stroma structure in detail. 

Sample scanning is performed step-by-step, pixel-by-

pixel, with the scanning resolution determined by the 

transverse resolution and depends on the numerical aperture 

(NA) of the beam [28]: 

 

𝛿𝑥, 𝑦 = √2 ln 2
𝜆0 

𝜋∙𝑁𝐴
.                (11) 

 

The numerical aperture (NA) also determines the depth 

of focus (𝑏 =
𝑛∙𝜆0 

2𝜋∙𝑁𝐴2
) of the beam in the medium [28].  Here 

n is the refractive index, 𝜆0 is the central wavelength. For 

compatibility with the sample thickness, which can reach 

up to 100 µm in the anterior stroma region,  NA is set to 

0.042. This configuration results in a depth of focus 𝑏 =
100  μm and 𝛿𝑥, 𝑦 = 7.15 μm. The transverse resolution is 

sufficient to resolve the lateral dimensions of both the 

lamellae and keratocytes. Under these conditions, 28 × 28 

transverse scans can be performed across a 200 µm × 200 

µm area. 

In the proposed model, the total interference signal 

generated by all photon packets within a single pixel is 

recorded, with the assumption that the depolarized 

component of the object field is minimized. 

The interaction of the incident radiation with the cornea 

produces an object signal composed of 𝑁𝑑 photon packets. 

These photon packets contribute to the formation of the 

OCT signal and are analyzed to reconstruct detailed 

information about the object under study. 

Let the Jones vector of i-th photon packet at the exit 

from the medium is 
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𝐸⃗ 𝑖 = (
𝐸∥𝑖
𝐸⊥𝑖
) = (

𝐴∥𝑖𝑒
𝑖𝜑∥𝑖

𝐴⊥𝑖𝑒
𝑖𝜑⊥𝑖

), where 𝐴∥,⊥𝑖 = |𝐸⃗
 
𝑖| -  amplitude 

components (horizontal (hor (∥)  and vertical (⊥)) of the 

one photon packet of object signal,  𝜑∥,⊥𝑖 = arg(𝐸⃗ 𝑖) – phase 

components.  

If photons do not interact with each other via 

interference, meaning the autocorrelation component is 

absent, the resulting intensity at the medium's output can be 

expressed as: 𝐼 = ∑ 𝐴∥,⊥𝑖
2𝑁𝑑

𝑖=1  

To retrieve detailed information about the object under 

study, we employ the PS-OCT approach, as validated in 

previous studies [11–13]. This method utilizes a modified 

Mach-Zehnder interferometer (Fig. 8) and extracts 

information on both geometric and dynamic phases from 

the recorded interference signals. These signals are captured 

separately in the horizontal D1 and vertical D2 channels of 

the interferometer. 

 

 

 
 

Fig. 8. The modified Mach-Zehnder interferometer scheme: L – radiation source; BS1,  BS2, BS3, BS4 – nonpolarizing beamsplitters; М 

– reference mirror; 𝑧𝑟 – optical path length in the reference arm, HWP – half-wave plate; D1, D2 – photodetectors; CPU – central 

processing unit; 𝑃(𝜑𝐺) – polarizer in the horizontal channel allowing to restore the initial horizontal polarization of the beam, which 

makes it possible to estimate the geometric phase; Р – polarizer in the vertical channel, allowing to recover the vertical component of 

the signal; PM – polarization modulator; S – sample.  x, y, z – laboratory coordinate frame, connected with the beam propagation 

direction (colour online) 

 

The formation of the OCT signal in this case occurs 

through the interaction of each individual photon packet 

with the reference wave. For modeling purposes, a section 

corresponding to the dimensions of one pixel, measuring 

0.5 μm × 0.5 μm, is selected from the cross-section of the 

beam. Within this section, the signal is generated by eight 

photon packets. A detailed explanation of the approach for 

reconstructing geometric and dynamic phases using the 

interferometric method for a single lamella, characterized 

by a uniform volume distribution and disrupted collagen 

fiber orientation, can be found in our previous works [11–

13]. 

The interference signals that are recorded in the 

horizontal and vertical channels can be written as: 

 

𝐼ℎ𝑜𝑟,𝑣𝑒𝑟(𝑧𝑟) = 𝐴𝑟
2 +∑ 𝐴∥,⊥𝑖

2𝑁𝑑
𝑖=1 + 2𝐴𝑟 ∑ 𝐴∥,⊥𝑖

𝑁𝑑
𝑖=1 cos(𝜑∥,⊥𝑖 − 𝜑0) exp (− [

2𝑧𝑟−𝐿𝑖

𝑙𝑐
]
2

)                         (12) 

 

or: 

𝐼ℎ𝑜𝑟,𝑣𝑒𝑟(𝑧𝑟) = 𝐼𝑟 + 𝐼∥,⊥ + 2𝐴𝑟∑𝐴∥,⊥𝑖

𝑁𝑑

𝑖=1

cos(𝜑∥,⊥𝑖 − 𝜑0) Γ(𝑧𝑟). 

 

Here 𝐴𝑟, 𝜑0 = 2𝑘𝑧𝑟 – amplitude module and phase of 

the reference wave correspondingly,  𝑧𝑟 – optical path 

length in the reference arm, Γ(𝑧𝑟) = exp (− [
2𝑧𝑟−𝐿𝑖

𝑙𝑐
]
2

) – 

coherence function,  𝐿𝑖 –  optical path length of the i-th 

photon packet in the medium, 𝑙𝑐 =
2 ln 2

𝜋𝑛

𝜆2

Δ𝜆
 – the coherence 

length in a medium with refractive index n determines the 

axial resolution 𝛿𝑧 = 𝑙𝑐 and defines the thickness of the 

optical material, i.e., the number of lamellae that can be 

resolved separately. In equation (16), the phase information 
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is contained in the high-frequency component cos(𝜑∥,⊥𝑖 −

𝜑0). 

The incoherent superposition of the corresponding 

components determines the intensity background, which is 

eliminated by using additional polarizers. 

The geometric phase is extracted by analyzing the 

phase distribution φℎ𝑜𝑟  of interferogram in the horizontal 

(∥) arm [11-13]: 

 

φℎ𝑜𝑟 = 𝜋 + 𝜑𝐷 + 𝜑𝐺 − 𝜑0.                   (13) 

          

Here 𝜑𝐷 = 2𝛿 – a dynamic phase, 𝜑𝐺 =
arctan(tan 𝛾 cos 2𝛼) – a geometric phase determined by 

the geometry of the birefringence media.  

 Information about the dynamic phase can be obtained 

by analyzing the interferogram from the vertical (⊥) arm, 

with a phase φ𝑣𝑒𝑟  between the superimposing components: 

  

φ𝑣𝑒𝑟 =
𝜋

2
+ 𝜑𝐷 − 𝜑0.         (14)                                                                                                            

 

According to (12)-(14) and results obtained in [11-13] 

the expressions for 𝛾 and 𝛼 can be written: 

 

{
 
 

 
 𝛾 = arccos [±√

𝐴∥
2

1+tan2(𝜑𝐺)
]

𝛼 =
1

2
arccos [± tan(𝜑𝐺)√

𝐴∥
2

𝐴⊥
2+tan2(𝜑𝐺)

]

, (15) 

 

where 𝐴∥ = ∑ 𝐴∥𝑖
𝑁𝑑
𝑖=1 ,  𝐴⊥ = ∑ 𝐴⊥𝑖

𝑁𝑑
𝑖=1  – obtained from 

envelopes magnitudes of the object signal in the horizontal 

and vertical channels of the interferometer. 

Analysis of the obtained interference signals in two 

channels of the interferometer (Fig.9) (𝐼ℎ𝑜𝑟,𝑣𝑒𝑟) allows us 

to construct envelopes (А-scans) (Fig. 9 a, orange line) of 

the resulting signal (Aℎ𝑜𝑟,𝑣𝑒𝑟) as [2, 29]: a complex 

analytical signal 𝐼ℎ𝑜𝑟,𝑣𝑒𝑟 = Αℎ𝑜𝑟,𝑣𝑒𝑟 exp(𝑖φℎ𝑜𝑟,𝑣𝑒𝑟) is 

introduced, where φℎ𝑜𝑟,𝑣𝑒𝑟 = arg(𝐼ℎ𝑜𝑟,𝑣𝑒𝑟) =  HT[𝐼ℎ𝑜𝑟,𝑣𝑒𝑟] 

is an interferogram phase, obtained by the Hilbert transform 

(HT) of the interference distribution.   Αℎ𝑜𝑟,𝑣𝑒𝑟 = |𝐼ℎ𝑜𝑟,𝑣𝑒𝑟|, 

which allows to extract information about the envelopes of 

the object signal 𝛢∥,⊥ (Fig. 10, a, b). The resulting 

interferograms were obtained for the first and second 

surfaces of lamella. 

The reflection coefficients at the object boundary  are 

proportional to the amplitudes of the A-scans: |𝑟∥,⊥| ∼

𝐴hor,ver
𝑚𝑎𝑥  and are related to the refractive indices of the media 

as 𝑟∥,⊥ = 𝑓(𝑛). The geometric thickness of the layers is 

determined as: 𝑑 = 𝑑𝑜𝑝𝑡/𝑛. 

Position of the envelope maxima in the horizontal 

channel 𝑑1,2 allows us to find the geometrical path length 

(effective geometrical thickness of the lamella 𝑑𝑒𝑓𝑓 = 𝑑2 −

𝑑1) (Fig. 9а). The maximum of amplitudes distribution 

Αℎ𝑜𝑟,𝑣𝑒𝑟(𝑑2) for the second surface reproduce 𝛢∥,⊥ (Fig. 9а, 

b). Phase of the interferogram (Fig. 10a,b) φℎ𝑜𝑟2,𝑣𝑒𝑟2 =

φℎ𝑜𝑟,𝑣𝑒𝑟(𝑧2
𝑜𝑝𝑡
) give  the value of the dynamic phase from 

the vertical channel: 𝜑𝐷 = φ𝑣𝑒𝑟2 + 𝜑0 − 𝜋/2 and the value 

of the geometric phase from the phase difference in the both 

channels:  𝜑𝐺 = φℎ𝑜𝑟2 − φ𝑣𝑒𝑟2 + 𝜋/2. z1
opt

, z2
opt

 – the 

optical path lengths of the signal in the object arm. 

 

 

 
(a)                                                                                                         (b)  

 

Fig. 9. The resulting interference (blue lines) signals in the horizontal (a) and vertical (b) channels of the interferometer, orange line 

indicates the distribution of modules of complex analytical signals for interferogram in the horizontal channel (colour online) 
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Fig. 10. Distribution phases (c-d) of complex analytical signals for interferograms in both channels of the interferometer. Here 𝑧1
𝑜𝑝𝑡

, 

𝑧2
𝑜𝑝𝑡

 – the optical path lengths of the signal in the object arm, which is formed by reflection from two surfaces of the lamella 

correspondingly,  𝜑ℎ𝑜𝑟2,𝑣𝑒𝑟2 – phases of the interferograms, which correspond to reflection from the inner surface of the lamella  

(colour online) 

 

Birefringence of the lamella is also determined by the 

angle of deviation of the slow axis of the lamella 𝛽 from the 

vertical direction (𝛽 = 0 when the slow axis is oriented 

along the axis z і 𝛽 = 90° when oriented in the horizontal 

plane). In the laboratory coordinate system ∆𝑛(𝛽) =

𝑛(𝛽) − 𝑛𝑜, where 𝑛(𝛽) =
𝑛𝑜𝑛𝑒

√𝑛𝑒
2 cos2 𝛽+𝑛𝑜

2 sin2 𝛽

 [30].  If the 

refractive indices of the medium 𝑛𝑜, 𝑛𝑒 are known or can be 

theoretically calculated, then the angle 𝛽 can be found from 

the analysis of the simulated dependencies 𝑛(𝛽) or ∆𝑛(𝛽) 
for the known value of birefringence (refractive index) of 

the medium (Fig. 13). 

 

 

 
 

Fig. 13.  Dependence of birefringence ∆𝑛(𝛽)and refractive index 𝑛(𝛽) on the angle of deviation of the slow axis of the lamella 𝛽 

(colour online) 
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The main results obtained from the above described 

analysis are the reflection coefficient from the first (upper) 

surface of the lamella 𝑟1∥, the moduli of the amplitude 

components of the object field 𝛢∥,⊥, the effective optical 

thickness 𝑑𝑒𝑓𝑓
𝑜𝑝𝑡

 (or the dynamic phase 𝜑𝐷) and the geometric 

phase 𝜑𝐺 . The following parameters of the lamella are 

obtained from the modeled values: the average refractive 

index 𝑛̅ = 1.37248, the effective thickness 𝑑𝑒𝑓𝑓 = 1.4527, 

the phase delay 𝛾 = 0.00554, the angle 𝛼 = 52.55°, the 

birefringence ∆𝑛(𝛽) = 5.1456 × 10−4 and angle 𝛽 =
75.3°. The errors of the obtained parameters are: 𝜀𝛼 =
1,86% , 𝜀𝛽 = 1,46%, 𝜀𝛾 = 4.97%, 𝜀𝑛̅𝑙 = 0,173% , 𝜀∆𝑛 =

0,86%, 𝜀𝑑𝑒𝑓𝑓 = 0.17%. 

The results of the simulation are presented in the next 

figure (Fig. 14). 

 

 

Fig. 14. Reconstructed structure of the cornea. Here (A) represents the OCT image of the cornea; (B), (C), (D), and (E) show two-

dimensional signal distributions (B-scans) in horizontal 𝛢ℎ𝑜𝑟(𝑥, 𝑧)  (left column) and vertical 𝛢𝑣𝑒𝑟(𝑥, 𝑧)  (right column) channels of the 

interferometer  for different regions of the cornea: 1- Bowman’s layer (B); 2- lamella (C, D); 3 - keratocyte (E). Bright areas define the 

boundaries of separation (colour online) 

The signal level is presented in a linear scale in relative 

units to the real geometric depth of the medium d (Fig. 14). 

The transverse dimensions of sections 1,2,3 correspond to 

the half-width of a Gaussian beam (~7 μm); the pixel 

dimensions are 0.5×0.5 μm2. Each B-scan (Fig. 14(B)-(E)) 

contains 14 A-scans in the transverse direction x. The signal 

inside each pixel is generalized by the number of photons 

in it. 

 
 
 

5. Conclusion 
 

The given paper is a continuation of the cycle of works 

on polarization-sensitive optical coherence tomography, 

which presents a new approach to reconstructing the fine 

structure of biological anisotropic objects based on a 

modified Mach-Zehnder interferometer using a geometric 

phase.  
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To increase the signal-to-noise ratio of reconstructing 

the architecture of the cornea, it is proposed to take into 

account the signal depolarization, which is the result of 

scattering of radiation on the scattering centers of the 

cornea. The simulation of photon packet propagation in the 

cornea is performed using the meridian plane Monte Carlo 

approximation, within which the object and interference 

signals are simulated with the reproduction of the spatial 

architecture of the cornea structure. The introduced 

feedback loop, connecting the computer module with the 

polarization modulator, allows for control of the probing 

signal by forming a horizontally linearly polarized beam 

before each subsequent lamella during sample scanning 

within the depth of the scan in real time. Extraction of 

information about the geometric and dynamic phases 

allowed us to reconstruct the structure of birefringent 

lamellas, and evaluation of interference signals in both 

channels of the interferometer provided a complete picture 

of the localization of scattering centers in the eye cornea. 
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